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Abstract Outer linearization methods, such as Van Slyke and Wets's L-shaped method for stochastic

linear programs, generally apply a single cut on the nonlinear objective at each major iteration. The structure

of stochastic programs allows for several cuts to be placed at once. This paper describes a multicut algorithm

to carry out this procedure. It presents experimental and theoretical justification for reductions in major

iterations. - : 1 )

Keywords: stochastic programming, outer linearization, cutting plane methods.

" - This author's work was supported in part by National Science Foundation Grant No. ECS-8304065,

Office of Naval Research Grant N00014-8-K-0628, by Dalhousie University during a visit in the Department

of Mathematics, Statistics, and Computing Science, and by the National Research Council under a Research

Associateship at the Naval Postgraduate School, Monterey, California.

.Accesio,! Vn' ]
NTIS Cct CFrI. Ti, L3 [_I

tgOPY 4

.... . .. " .-- ..

7 
,



I. Introduction

Two-stage stochastic linear programs have a deterministic equivalent program with convex objective

function that can be solved by a variety of methods. The L-shaped method of Van Slyke and Wets 112] is

a cutting plane or outer linearization technique for solving this program when the random variables have

finite support. It has been extended to multi-stage stochastic linear and quadratic programs by Birge [3]

and Louveaux [10], respectively. Their analyses showed the L-shaped algorithm to be an effective solution

technique for a variety of examples. The structure of stochastic programs, however, allows the L-shaped

method to be extended to include multiple cuts on the objective in each major iteration. This paper

describes this procedure for two-stage stochastic linear programs. A multi-stage version has been proposed

by Silverman [111.

Adding multiple cuts at each iteration of an outer linearization procedure corresponds in the dual to

including several columns in the master problem of an inner linearization algorithm such as Dantzig-Wolfe

decomposition (see, for example, Lasdon [9]). In inner linearization, adding several columns instead of a single

aggregated column may speed up convergence (see Birge [2]) and reduce the number of major iterations. The

same types of behavior may arise in outer linearization, but only qualitative descriptions have been given. In
VN

this paper, we quantify this phenomenon by using the problem structure to derive worst-case bounds on the

number of major iterations in the single and multiple cut cases. These results are supported by experiments

on practical test problems.

In Section 2, we briefly describe the L-shaped algorithm and the problem structure. In Section 3, we

present the multicut algorithm and, in Section 4, we discuss its efficiency in terms of bounds on the number

of major iterations for general problems. The specific case of simple recourse problems is discussed in Section

5. Section 6 presents results of numerical experiments and the appendices provide illustrative examples of

claims made in the text.
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2. The L--ghaped algorithm

The classical two-stage stochastic linear program with fixed recourse is the problem of finding

min z = c +Eg[minq(w)y(w)j

s.t. Ax =b

T(w)x +Wy(w) =h(w)

x >0 &4w) O0a.s.()

where c is a known vector in qtn', b a known vector in Rml, is a random N-vector defined on the

probability space, (1), E, P), and A and W are known matrices of sizes m, x n1 and M2 X n2 , respectively.

W is called the recourse matrix.

For each w, T(w) is m2 x nj, q(w) C- Rn' and h(w) C- M. Piecing together the stochastic components

of the problem, we obtain a vector C(w) = (q(w), h(w), Ti,..Tm, (w)) with N = n2 + m2 + (n2 X 1

components, where T (w) is the ith row of T(w). Tfransposes have been eliminated for simplicity. Ee

represents the mathematical expectation with respect to C.

A precise formulation of (1) is given by the deterministic equivalent progvum (D.E.P.):

min z = c +.Q(z)

S.t. Ax =b

x >0 (2)

where

Q12M =;Qx Cw

and

Q(--, (w)) =min~q(w)y(w) I Wy(w) = h(w) - T(w) x, y 0)O.

Properties of the D.E.P. have been extensively studied (Wets 1 13], Garntka and Wets 16]). Of particular

interest for computational aspects is the fact that Q(x, f) is a convex piecewise linear function of x and that

.Q(x) is also piecewise linear convex if has finite support.
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When T is non-stochastic, the original formulation (2) can be replaced by

min z = cz +(X)

s.t. Ax = b

Tz -X = 0

z > 0 (3)

where T(X) = Eeo(X, C(w)) and O(X, C(w)) = minfq(w)y(w) I Wy(w) = h(w) - X, /> 0}. This formulation

stresses the fact that choosing z corresponds to generating an m2 -dimensional tender X = Tx to be "bid"

against the outcomes h(w) of the random events.

In this paper, we concentrate on algorithms for solving (2) or (3). Excluding algorithms for the specific

simple recourse problem (see, e.g., Kall 181, Wets [141), a major method for solving (2) is the L-shaped

algorithm due to Van Slyke and Wets [121 which is an outer linearization procedure as in Benders' decom-

position (Benders [1). For more details on other algorithmic procedures, see the discussion in Wets [14].

Outer linearization is generally preferred to inner linearization of the dual because the dual generally has

more rows than the primal and, hence, requires more work per iteration. Outer linearization is also generally

preferred to basis factorization in stochastic linear programming because basis requires storing a basis for

each realization of f. In outer linearization, these bases need not be stored. Efficient procedures (see Wets

[14]) may then be used to solve Q(x, f(w)) for large numbers of realizations of C.

The L-shaped method consists of solving an approximation of (2) by using an outer linearization of Q.

Two types of constraints are sequentially added: (i) feasibility cuts (5) determining {xIQ(z) < +oo} and (ii)

optimality cuts (6) which are linear approximations to Q on its domain of finiteness.

Assumption: The random variable f has finite support.

Let k = 1,..., K index the possible realisations of e with probabilities ph.

L-shaped algorithm

Step 0. Set 9=t=tv=O.

Step 1. Set v = L + 1. Solve the linear program (4) - (6).

4
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min z=cz +0 (4)

s.t. Ax =b

Di di,= 1,...,, (5)

Elz +0 > e, = 1,...,t, (6)

x>0, E0R.

Let (x, 0') be an optimal solution. If no constraint (6) is present, 0 is set equal to -oo and is ignored

in the computation.

Step -. For k = 1, ... , K solve the linear program

min W1  Cv+  +ev-

s.t. Wy +Iv +  -I- =h - Tkzw

y >_ O, V+ > 0, - ,

where e = (1, ... , 1), until, for some k, the optimal value w1 > 0. Let e be the associated simplex multipliers

and define

D, = aLTk

and

to generate a feasibility cut of type (5). Set a = s + 1 and return to Step 1. If, for all k, w' = 0, go to Step

3.

Step 3. For k = 1, ... , K solve the linear program

min w 2 = qk&y

s.t. Wy =hA - Tkx'

y >0.

(7)

Let r i be the simplex multipliers associated with the optimal solution of Problem k of type (7). Define

K

t k--ITk (8)
k=1

%5



and
K

et+1 p.= i , PWhk. (9)
k= 1

Let w2" = e,+I - Et+l 2. If e w2', stop, z" is an optimal solution. Otherwise, set t = t + 1, and

return to Step 1.

Improvements in this algorithm have been given in two directions: (i) the study of cases in which Step

2 can be modified to solve only one linear program instead of N and (ii) the study of bunching and sifting

procedures to reduce the work in Step 3 (Garstka and Rutenberg I51). We again refer to Wets 114] for a

detailed account of these improvements.

In this paper, we propose to replace the outer linearisation of Q used in the L-shaped method by an

outer linearization of all functions

Qk(z) = min{qky I Wy = h, - T, y !_ 0), (10)

of which Q(x) constitutes the expectation, i.e. Q(Z) = k=1 PkQkdz).

3. The Multicut L-shaped Algorithm

The multicut L-shaped algorithm is defined as follows:

Step O. Set s v = 0 and tk = 0 for all k = 1,..., K.

Step 1. Set v = i + 1. Solve the linear program (11) - (13).

nin z = cz+ '=1 h (11)

s.t. Ax =b

Dix di, I= 1, ... , Is (12)

E,( )X +8k k e(k), 1(k) = I,..., t(k), k - ,..., K, (13)

x >0,

Let (x, ...0', 6) be an optimal solution of (11). If no constraint (13) is present for some k, 0' is set

equal to -co and is ignored in the computation.

6
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Step R. As before.

Step 3. For k = 1,..., K solve the linear program (7).

Let r. be the simplex multipliers associated with the optimal solution of problem k. If

0' < pkW (h, - Tkz") (14)

define

Etk)+ = pklrkTk (15)

and

et(k)+i Pkrkhk (16)

and set t(k) = t(k) + 1.

If (14) does not hold for any k 1,..., K, stop, z' is an optimal solution. Otherwise, return to Step 1.

We illustrate the differences and similarities between the multicut approach and the standard L-shaped

algorithm in the example of Appendix A. The multicut approach is based on the idea that using outer

approximations of all Qk(z) sends more information than a single cut on Q(z) and that, therefore, fewer

iterations are needed.

A. Efficiency and bounds

The following dominance property can be established. Define K, n K 2 to be the constraint set of the

stochastic program (2), where

K, = {xIAx= b,x >_ 0}

and

K 2 = l fEE{r I Y - 0 such that Wy = h( ) - T( )x},

where by assumption E is finite.

7 ,
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Q(x) is known to be piecewise linear, hence there exists a polyhedral decomposition of K, n K 2 into a

finite collection of closed convex sets C, called the cells of the decomposition, such that the intersection of

two distinct cells has an empty interior and such that the function Q(x) is either identically -oo or affine

on each cell.

The L-shaped method outerlinearises Q(x) by identifying a facet, the function graph for one cell of the

decomposition, on each return to Step 1. The multicut algorithm outerlinearizes Qk(x). On each return to

Step 1, the multicut algorithm identifies a facet of some Qk(x). This information may, however, be equivalent

to identifying several facets of Q since each combination of facets of QA corresponds to a single facet of Q.

This property enables the multicut algorithm to converge faster than the L-shaped algorithm.

In the following proposition, we state this more precisely. We define a major iteration to be the operations

performed between returns to Step I in both algorithms. Simplex iterations are the number of simplex

algorithm pivots performed on any of the linear programs considered by the algorithms.

Proposition: Let {z} be a sequence of points generated by the multicut algorithm and let {y"} be a

sequence generated by the L-shaped algorithm. Then, if at all major iterations, z" and y' belong to the

same cells of the decomposition of Q, the number of major iterations needed by the multicut algorithm will

be less than or equal to the number of major iterations of the L-shaped algorithm.

Proof. If the conditions of the propostion are met, then constraints (5) and (12) are the same in the L-

shaped and multicut algorithms. Each constraint in (6) corresponds to K constraints in (13) such that E =
K EK

M= Ei() and el h=1 eI(k). Hence, if (z,8k), - 1,... ,K are feasible in (11) - (13) fork = 1,... ,K,

then (X,9 = "= IO) is feasible in (4)-(6). Therefore, the multicut algorithm objective value, z(multi)

z(L-shaped), the L-shaped algorithm objective value. If z(L-shaped) = z, the optimal value in (1), then

z(multi) = z*."

Note that zx' and y' belong to the same cell of the Note that x' and y' belong to the same cell of the

decomposition if the recourse function Q(z, f) is linear in f for each iterate x. Whenever a nonlinearity is

detected, however, the iterates generally diverge. In addition, whether the iterate points belong to cells that

8



are close to or far from the optimal point is partly a matter of chance. Therefore, the L-shaped method can

conceivably do better than the multicut approach (the reverse is obviously also true) in terms of number

of major iterations. We illustrate this by the example in Appendix B. Other examples where the multicut

approach does better than the L-shaped method can easily be constructed (see Appendix A).

Since none of the methods is superior to the other in all circumstances, the efficiency of the two ap-

proaches is measured in terms of worst-case analysis on the number of major iterations.

Definition:

Let b(f) represent the maximum number of different slopes of Q(x, e) in any direction parallel

to one of the axes for a given e , i.e. the maximum number of different cells (of the polyhedral

decomposition of K, n K 2 relative to Q(x, e) for a given f) encountered by any ray (parallel to one

of the axes) originating at a point arbitrarily chosen in K, n K 2 .

Define b = maxEsb(e) to be the "slope number of the second-stage of (2)."

For examples of b(f) and b, see the appendices. Figure 1 illustrates the example in Appendix A. The

functions Q1, Q2, and Q3 represent Q(z, e) for f 1 I, f2 = 2, and e3 = 4, respectively. In this case,

m2 = 1, b(1) = b(2) = b(4) = b = 2. In Appendix B, m 2 = 1, b(e ) = 2, and b(f 2) = 4 = b.

Theorem: Let b be the slope number of the second stage of (2). Then, the maximum number of iterations

* for the multicut algorithm is

1 + K(b m2 - 1) (17)

while the maximum number of iterations for the L-shaped algorithm is

[1 + K(b - 1)]"' (18)

where K is the number of different realizations of .

Proof. To illustrate the result, consider Figure 1 for the example in Appendix A. Let b be the slope number

of the second stage of (2) (b = 2 in Figure 1). In the worst-case (as in Figure 1), b(f) = b for all I E :-.

A single linear piece of each Qk, k = I,... K, in some direction j corresponds to a single linear piece of Q

9
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in direction j. Each new slope for each Qj can result in a new slope for Q in direction j. For b - 1 new

slopes for each qi, in the worst-case, Q obtains 1 + K(b - 1) slopes in direction j. (Note the 4 = 1 + 3()

slopes in Figure 1.) Since this can occur in each direction j- 1,..2. , 1 + K(b - 1)1rn2 facets of Q can

be generated.

In the worst-case, the L-shaped method considers every facet of Q (proving (18)). For the multicut

approach, however, in the worst-case, one facet of each Qk is identified in each step. Since each Qk has atN most b slopes in direction j, each Qk has at most bm1 2 facets. On the first iteration, a facet is identified for

each ,k 1,..., K. Hence, the maximum number of iterations is 1 + (Kbn2 - K), proving (17).u

The maximal number of iterations has an immediate consequence on the size of the first-stage problems

to be solved. While problems of smaller size are needed in the first iterations of the L-shaped method

(in1 + 1 constraints, n1 + 1 variables) as compared to the multicut (in, + K constraints, nj + K variables),

the above theorem shows that the size of the problem is of the order (b - 1)"m K 1 2 in the worst-case for

the L-shaped approach and K(b' - 1) for the multicut strategy. One can therefore expect the multicut

approach to be especially efficient for problems where m2 is large, many cuts are needed, and, as we mention

in the discussion of numerical examples below, K is not larger than n1 .

In the next section, the number of facets for the particular case of simple recourse is given explicitly.

6,

5. The Simple Recourse Case

The simple recourse problem is a particular case of the formulation (3) with non-stochastic matrix T

where the function (X, ) is separable

"=1

and

Ob (xi, ) =min{q!y + + q0 y - y= - ,y + 1_ 0,y" 0}, (20)

where

, = (qt, q-,hj ).

10



Assume that, for each i, j can take on J different values (where for simplicity of exposition J is assumed

to be the same for all i).

Then, using the multicut approach consists of approximating the recourse function T (x) by the outer-

linearization
m2 2

E Oij. (21)

Due to the simple recourse property, only two cuts of type (13) can be generated for each 0,i, namely

ii - Piqo'(X, - h1,) (22)

and

0,i _ piq+(h - X,) (23)

where p,, denotes the probability of the jPI realization of e,.

Introducing the slack variable uj3 in constraint (22),

pj.q.7(X. - h,) + u,, = Oi (24)

and substituting 0," from (24) into (21)-(23), the simple recourse problem (19), (20) is equivalent to

min CX + Er-21  p1 2 q,(Xi-h,) + uij

s.t. Ax = b

Tx -X = 0

Uii ~ piqjh - X)

(25)

where q1, = q+" +q

From (25), we can derive the following algorithm.

Multicut Algorithm for Simple Recourse Problems

11



Step 0. Set v = t = 0.

Step 1. Set V = v + 1. Solve the linear program

min cz i= I ,'= Piiqo (T z) + E1=1 ut

s.t. Az b

u8 _ el - Etz, I ,.. ti

U1 _ 0, 1 = 1 .,t.

(26)

Let (z, u') be an optimal solution. If t 0 0, then u is ignored in the computation.

Step 2. For each i = 1,..., m2, and j= 1,...,J, if the constraint

0 p,,,(h - Tiz') (27) "

is violated, define

Et+x= piiiTI

and

et+l= p*jq1ih.i

and set t= t +1.

Note that the constraints in (26) are a subset of the constraints in (25). We use the notation ul to

represent those ts- in (25) that have been identified in Step 2 of the multicut algorithm. Inequality 27

identifies any constraints in (25) that are not met on iteration L. These constraints are added for the next

iteration, v + 1.

The initial problem (27) involves mi constraints and n1 variables. For this problem, the worst-case

situation is when at each iteration, only one constraint (27) is violated in Step 2. Then, the maximal

number of iterations is Jm + 1. To compare with the maximal number of iterations an L-shaped algorithm

12
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would require to solve the same problem, note that for each i, the function i (Xi) = Eo,(Xi, &,) contains

J + 1 facets and since T(X) is separable in i, it contains at most (J + 1)-, facets. This is precisely the

worst-case upper bound on the number of iterations for an L-shaped type algorithm as in the theorem of

Section 4.

6. Numerical Experimentation and Conclusions

The L-shaped algorithm and the multicut method have been coded in FORTRAN in the codes NDREG

and NDSEP respectively. NDREG is a two-stage version of the multi-stage code developed by Birge in [31

and described in [4]. NDSEP uses the same subroutines for linear program solutions, constraint generation

and constraint elimination as NDREG. The subroutines to control where cuts are placed and to determine

optimality have been modified in NDSEP to reflect the differences between the standard L-shaped method

and the multicut approach.

The set of test problems and their size characteristics appear in Table 1. The first four problems are

small energy examples with varying objectives and constraints and the last example is a stochastic two-

stage version of one of Ho and Loute's [7] staircase problems. These examples were chosen because of their

applicability and the facet structure of their recourse functions.

The problems were solved using the FORTRAN-G compiler at The University of Michigan on an Amdahl

* 5860. The number of major iterations, simplex iterations and CPU seconds are given for each problem in

Table 2, where "Single Cut' refers to NDREG and "Multiple Cuts" refers to NDSEP. Both NDREG and

NDSEP used the bunching approach (Wets [14]) for solving second-period problems. They also both included

the deletion of slack cuts which resulted in savings of up to twenty percent in CPU times.

The results in Table 2 illustrate the effectiveness of the multicut approach and some of its shortcomings.

In each example, the number of major iterations is reduced. This is due to the passing of more information

on each major iteration as noted above. A difficulty arises, however, because of the increased size of (11) -

(13) over (4) - (6). Although (4) - (6) in the worst-case may have many more constraints than (11) - (13),

program (11) - (13) is initially larger and, hence, requires more time to solve. This leads to the increased

*13
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time in solving NRG4 by NDSEP. NDSEP, in fact, spends 2.8 more CPUs solving (11) - (13) than NDREG

spends solving (4) - (6) on NRG4. This problem is an especially bad case because the original problem is so

small that the addition of 27 extra constraints increases its size nine-fold and has a significant slowing effect.

These examples suggest that the multicut approach can lead to significant reductions in the number

of major iterations. As indicated above, the worst-case advantage of the multicut approach in limiting

major iterations is enhanced as m2 increases in size. The experiments show that the multicut approach

is most effective when the number of realizations K is not significantly larger than the number of first

period constraints nI. When K is large relative to ni, it may be advantageous to use a hybrid approach

in which subsets of the realizations are grouped together to form a reduced number of combination cuts.

The worth of this and other strategies is, however, problem dependent and should be demonstrated through

experimentation in different and varied application areas.

14
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Table 1. Problem parameters

Problem Period 1 _A) Period 2(W) Realizations

n_ m_ p" n2 M2_ p K
NRG1 7 3 1.000 20 8 0.375 3
NRG2 7 3 1.000 20 8 0.375 3
NRG3 7 3 1.000 20 8 0.375 9
NRG4 7 3 1.000 20 8 0.375 27
SCAGR7.S2 36 16 0.191 79 39 0.092 8

*fraction of elements (excluding slack variable elements) which are nonzero

Table 2. Experimental results

Problem Single Cut Multiple Cuts

Major Simplex CPUs Major Simplex CPUs
Iterations Iterations Iterations Iterations

NRG1 10 117 0.34 6 64 0.23
NRG2 13 163 0.49 9 92 0.35
NRG3 14 196 1.26 8 121 1.11
NRG4 14 207 3.19 7 166 5.66
SCAGR7.S2 10 138 1.66 7 108 1.40

Appendix A

Assume that n, = 1, n2 =2, m2 =1, K =3, W = (1-1), and Q(x, ) = - , if z < f; z - f, if

x C, and that C can take on the values 1, 2, and 4, each with probability 1/3. Assume also cx = 0 and

0 < x < 10. Note that Q has two slopes for each , hence, b = 2.

Figure 1 represents the functions Q1(z), Q2(X), Q3(z), and Q(z). Since the first-stage objective cz is

zero, Q(x) is also the function z(x) to be minimized. Assume the starting point is zx' - 0. The sequence of

iterations for the L-shaped method would be:

Iteration 1:

z' is not optimal; send the cut

6 > 7/3 - x.

15
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Iteration 2:

z 2 = 10,02 = -23/3 is not optimal; send the cut

0 > z - 7/3.

Iteration 3:

3 = 7/3, 93 = 0 is not optima; send the cut

x+l

3

Iteration 4:

z4 = 1.5, 04 = 2.5/3 is not optimal; send the cut

5-:
0 > - .

3

Iteration 5:

X5 = 2, 05 = 1, which is the optimal solution.

Starting from z' = 0, the multicut approach would yield the following sequences:

Iteration 1: z' is not optima]; send the cuts 01 4-3: 02 33a, 03 j '3.

Iteration 2: X3 = 10, 02 = -2, 02 = -8/3, 02 =-3 is not optima;

send the cuts 0 11, 02.. RV 3 -

Iteration 3:x3 = 2, 93 = 2/3, 03 = O, 03 = 1/3 is the optimal solution.

Therefore, by sending separate cuts on Q,(:), Q 2 (X), and Q3(z), the full description of Q(z) is obtained

in two iterations.

q

.. ,¢ .-. .( -. . .:.: .- *.I *... * ..~ .,p.' .-" . s. . , rr ,# , ,"-' , . . ." "; . . ;._.., .,, , " " ,..' .'....-.' y..) '>.".'r : :.: . "v,' , '(.' : .:.".i" V .
. .. .. . - -- - - li] I Ill i



Appendix B

Assume nj = 1, m 2 = 3, n 2 = 6,

W 0 1 0 0 100 -1 -1 0 0)

and K = 2 realizations of with equal probability 1/2. These realizations are (q', h', TI) and

S= (q2 ,h2 ,T 2 ), where q' (1,0,0,0,0,0), q2 = (3/2,0,2/7,1,0,0), h' = (-1, 2 , 7 )T, h2 = (0, 2 , 7 )T, and

T- r = (1). For the first value of , Q(x, C) has two pieces, such that

Q (Z) =ox-1 ifx<-l.
0 f X> -1.

For the second value of f, Q(z, C) has four pieces such that

-1.5Z if < 0,

Q2(Z) 0 ifo0:x 2,2/7(x -2) if2<!5x<_59,
- 7 if X>9.

Assume also that x is bounded by -20 < x < 20 and c = 0. Starting from any initial point x1 < -1,

one obtains the following sequence of iterate points and cuts for the L-shaped method. Note that four slopes

occur for Q2 , hence, b = 4.

Iteration 1: x1 - 2, 01 is omitted; new cut 0 > -0.5 - 1.25x.

Iteration 2: x2 = +20, 62 -25.5; new cut 0 > 0.5: - 3.5.

Iteration 9: 3 = 12/7, 83 -37/14; new cut 8 _> 0.

Iteration 4: : E [-2/5, 7], 4 - 0.

If X4 is chosen to be any value in [0,2] then the algorithm terminates at Iteration 4.

The multicut approach would generate the following sequence.

Iteration 1: z' = -2, 8' and 01 omitted; new cuts 01 -0.5Z - 0.5, 02 2! -3/4x.

Iteration 2: :2 = 20, 82 - 10.5, 0 -2 15; new cuts 81 9_ 0, 02 _ 0.5x- 3.5.

Iteration 3: z3 = 2.8, 8 = 0, 93 = -2.1; new cut 02 _ 2/7 (z- 2).

Iteration 4:z 4 - 0.552, 04 = 0, 9 = -0.414; new cut 02 >0.

Iteration 5: x6 = 0, 08 =6 = 0, STOP.
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